Superstable triangle.(MOG variant)

https://www.linkedin.com/feed/update/urn:li:activity:6644445407814516736
Suppose that we have an triangle with sides a, b, c such that for every positive integer n there exists a triangle with sides $a^{\mathrm{n}}, b^{\mathrm{n}}$ and c^{n}.
Prove that the triangle must be equilateral.

Solution by Arkady Alt, San Jose ,California, USA.

We will prove that for triangle $A B C$ with side length a, b, c the numbers $a^{\mathrm{n}}, b^{\mathrm{n}}$ and c^{n} are side lengths of a triangle for every $n \in \mathbb{N}$ iff $A B C$ is isosceles with equal sides lengths, which not less then third one.
For any real x, y, z let $\Delta(x, y, z):=2 x y+2 y z+2 z x-x^{2}-y^{2}-z^{2}$. Note that $\Delta\left(x^{2}, y^{2}, z^{2}\right)=(x+y+z)(x+y-z)(x-y+z)(-x+y+z)$ and for positive x, y, z we have equivalency $\Delta\left(x^{2}, y^{2}, z^{2}\right)>0 \Leftrightarrow\left\{\begin{array}{l}x+y>z \\ y+z>x \\ z+x>y\end{array}\right.$.
Thus, $a^{\mathrm{n}}, b^{\mathrm{n}}$ and c^{n} satisfies triangle inequalities iff $\Delta\left(a^{2 n}, b^{2 n}, z^{2 n}\right)>0$.
Let $n \in \mathbb{N}$ be any and $a^{\mathrm{n}}, b^{\mathrm{n}}$ and c^{n} be side lengths of a triangle, that is $\Delta\left(a^{2 n}, b^{2 n}, z^{2 n}\right)>0$. Due symmetry and homogenity of $\Delta\left(a^{2 n}, b^{2 n}, c^{2 n}\right)>0$ WLOG we assume that $a \geq b \geq c$ and $c=1$.
Then for any $n \in \mathbb{N}$ we have $\left\{\begin{array}{c}\Delta\left(a^{2 n}, b^{2 n}, c^{2 n}\right)>0 \\ a \geq b \geq c=1\end{array} \Leftrightarrow\left\{\begin{array}{c}b^{n}+1>a^{n} \\ a \geq b \geq 1\end{array}\right.\right.$.
Suppose that $a>b$, then by Bernoulli Inequality $a^{n}=(b+(a-b))^{n}=b^{n}\left(1+\frac{a-b}{b}\right)^{n}>$ $b^{n}\left(1+\frac{a-b}{b} \cdot n\right)=b^{n}+n(a-b) b^{n-1}>b^{n}+n(a-b)>b^{n}+1$ for any $n>\max \left\{\frac{1}{a-b}, 1\right\}$. This contradicts the fact that inequality $b^{n}+1>a^{n}$ holds for any $n \in \mathbb{N}$.
Thus $a=b$ and, therefore, triangle should be isosceles with two equal sides, which not less then third one.
Let now $a=b \geq c$ then $\Delta\left(a^{2 n}, b^{2 n}, c^{2 n}\right)=2 a^{n} b^{n}+2 b^{n} c^{n}+2 c^{n} a^{n}-a^{2 n}-b^{2 n}-c^{2 n}=$ $4 c^{n} a^{n}-c^{2 n} \geq 3 c^{n}>0$.

